



Lawrence Reeves

The objective of this presentation is to give a foundation of understanding of the power system and power budget of a satellite.



## **Power System Purpose**

- Purpose: to provide enough power for the mission
  - Ensure power generated  $\geq$  power consumed

- Be able to understand and account for:
  - Average power generation/consumption
  - Worst-case power generation/consumption
  - "Reasonable" operational power generation/usage scenario
  - Beginning-of-Life (BOL) versus End-of-Life (EOL)



## **Sample Mission Spacecraft**



- Earth Observation / Science payloads.
- 400km altitude circular orbit. Orbit period = 92.6 minutes.
- 10:30 a.m. SSO LTAN.
- 1.0 m<sup>2</sup> solar panel on +X and –X faces.
- $0.5 \text{ m}^2$  solar panel on +Z face.



## **Power System Elements**

- 1. Power Source
  - Solar panels, Radioisotope Thermoelectric Generators (RTGs), Fuel Cells
- 2. Power Storage
  - Batteries
- 3. Power Conditioning & Distribution
  - Regulated power, power conversion (e.g., to 5V, 12V)
  - Be aware of the conversion efficiencies!
- 4. Power sink(s)
  - i.e., components that .use power



## **Basic Power System Architecture**





## **RapidEye Power System Architecture**





18/04/05





#### **Basic Power Budget – Average Orbit**

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                        |
| - GPS                | 6.0                | 100.0%     | 6.0                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                        |
| - Magnetorquer       | 4.0                | 6.7%       | 0.3                        |
|                      |                    |            |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                        |
| Transmitter 1        | 5.0                | 3.7%       | 0.2                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                        |
|                      |                    |            |                            |
| Payload 1            | 15.0               | 30.0%      | 4.5                        |
| Payload 2            | 35.0               | 10.0%      | 3.5                        |
| Total                |                    |            | 50.0                       |



#### **Basic Power Budget – Worst-case orbit**

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                        |
| - GPS                | 6.0                | 100.0%     | 6.0                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                        |
| - Magnetorquer       | 4.0                | 50.0%      | 2.0                        |
|                      |                    |            |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                        |
| Transmitter 1        | 5.0                | 12.0%      | 0.6                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                        |
|                      |                    |            |                            |
| Payload 1            | 15.0               | 40.0%      | 6.0                        |
| Payload 2            | 35.0               | 25.0%      | 8.8                        |
| Total                |                    |            | 58.9                       |



#### **Basic Power Budget – Some Issues**

- Where did you get the unit power usage values from?
  - Estimate for a new design? Spec Sheet? Measured values in a realistic usage setting?
  - For each of those, you will want to add in some margin.

If the Power System is converting voltage, there is an efficiency loss.
 E.g., on RapidEye, the 28V-to-12V converter was only 67% efficient.
 That means that every Watt needed by a 12V unit requires 1.5W of power at 28V (the "source" power).



#### <u>New Power Budget – Average Orbit</u>

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit<br>Average<br>Power (W) | Source?    | Margin | Power<br>Usage with<br>Margin | Orbit Average<br>Power (W) | Voltage | Efficiency<br>Factor | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|-------------------------------|------------|--------|-------------------------------|----------------------------|---------|----------------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                           | Spec sheet | 5.0%   | 9.5                           | 9.5                        | 12      | 98%                  | 9.6                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                          | Measured   | 2.0%   | 12.2                          | 12.2                       | 5       | 66%                  | 18.5                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                           | Spec sheet | 2.0%   | 1.5                           | 1.5                        | 5       | 66%                  | 2.3                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                           | Alteration | 15.0%  | 8.1                           | 8.1                        | 12      | 98%                  | 8.2                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                           | Spec sheet | 5.0%   | 3.2                           | 3.2                        | 5       | 66%                  | 4.8                        |
| - GPS                | 6.0                | 100.0%     | 6.0                           | Measured   | 2.0%   | 6.1                           | 6.1                        | 5       | 66%                  | 9.3                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                           | Measured   | 2.0%   | 1.0                           | 1.0                        | 5       | 66%                  | 1.5                        |
| - Magnetorquer       | 4.0                | 6.7%       | 0.3                           | Measured   | 2.0%   | 4.1                           | 0.3                        | 12      | 98%                  | 0.3                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                           | Measured   | 2.0%   | 2.0                           | 2.0                        | 12      | 98%                  | 2.1                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 2.0                           | 0.0                        | 12      | 98%                  | 0.0                        |
| Transmitter 1        | 5.0                | 3.7%       | 0.2                           | Measured   | 2.0%   | 5.1                           | 0.2                        | 12      | 98%                  | 0.2                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 5.1                           | 0.0                        | 12      | 98%                  | 0.0                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Payload 1            | 15.0               | 30.0%      | 4.5                           | Alteration | 15.0%  | 17.3                          | 5.2                        | 12      | 98.0%                | 5.3                        |
| Payload 2            | 35.0               | 10.0%      | 3.5                           | New Design | 25.0%  | 43.8                          | 4.4                        | 12      | 98.0%                | 4.5                        |
| Total                |                    |            | 50.0                          |            |        |                               | 53.6                       |         |                      | 66.6                       |



#### <u>New Power Budget – Worst-case orbit</u>

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit<br>Average<br>Power (W) | Source?    | Margin | Power<br>Usage with<br>Margin | Orbit Average<br>Power (W) | Voltage | Efficiency<br>Factor | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|-------------------------------|------------|--------|-------------------------------|----------------------------|---------|----------------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                           | Spec sheet | 5.0%   | 9.5                           | 9.5                        | 12      | 98%                  | 9.6                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                          | Measured   | 2.0%   | 12.2                          | 12.2                       | 5       | 66%                  | 18.5                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                           | Spec sheet | 2.0%   | 1.5                           | 1.5                        | 5       | 66%                  | 2.3                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                           | Alteration | 15.0%  | 8.1                           | 8.1                        | 12      | 98%                  | 8.2                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                           | Spec sheet | 5.0%   | 3.2                           | 3.2                        | 5       | 66%                  | 4.8                        |
| - GPS                | 6.0                | 100.0%     | 6.0                           | Measured   | 2.0%   | 6.1                           | 6.1                        | 5       | 66%                  | 9.3                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                           | Measured   | 2.0%   | 1.0                           | 1.0                        | 5       | 66%                  | 1.5                        |
| - Magnetorquer       | 4.0                | 50.0%      | 2.0                           | Measured   | 2.0%   | 4.1                           | 2.0                        | 12      | 98%                  | 2.1                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                           | Measured   | 2.0%   | 2.0                           | 2.0                        | 12      | 98%                  | 2.1                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 2.0                           | 0.0                        | 12      | 98%                  | 0.0                        |
| Transmitter 1        | 5.0                | 12.0%      | 0.6                           | Measured   | 2.0%   | 5.1                           | 0.6                        | 12      | 98%                  | 0.6                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 5.1                           | 0.0                        | 12      | 98%                  | 0.0                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Payload 1            | 15.0               | 40.0%      | 6.0                           | Alteration | 15.0%  | 17.3                          | 6.9                        | 12      | 98.0%                | 7.0                        |
| Payload 2            | 35.0               | 25.0%      | 8.8                           | New Design | 25.0%  | 43.8                          | 10.9                       | 12      | 98.0%                | 11.2                       |
| Total                |                    |            | 58.9                          |            |        |                               | 64.1                       |         |                      | 77.3                       |





This section assumes we're using Solar Panels for a LEO orbit.



## **Annual Variation of Solar Flux**

The Earth's orbit around the Sun is not perfectly circular, it is elliptical. Its distance from the Sun varies throughout the year (orbit) by about 1.7%, which causes a  $\sim$ 3.3% variation in the Solar Flux received at Earth, between  $\sim$ 1322 W/m<sup>2</sup> and 1414 W/m<sup>2</sup>, with the average being 1368 W/m<sup>2</sup>.





### **Solar Power Incident at Aphelion**



Peak Solar Panel Power Output =  $P_i$  \* SP Area \* SP Efficiency = 1322 \* 0.5 \* 17% = 112.3W







## An Attitude Sphere for a Satellite





## **Attitude Sphere**





## **Attitude Sphere (my preference)**





## **Earth's Angular Radius**

At a given altitude (height) H, the angular radius  $\rho$  of the Earth is:

 $\rho = \sin^{-1}(R_E / (R_E + H))$ 



#### **Earth's Angular Radius**







The Beta Angle is the angle between the sun and the orbit plane





## Looking from the Sun to a Satellite in Orbit



0° Beta Angle (a "noon-midnight" orbit).

Disting

## Sun Movement from the Spacecraft Perspective



0° Beta Angle (a "noon-midnight" orbit)



# Sun Movement from the Spacecraft Perspective



When the Beta angle is greater than the Earth's angular radius, the spacecraft is illuminated by the sun throughout the orbit.



# **Calculating the Beta Angle (β)**

- Find the latitude & longitude of the "Pole" of the orbit plane the vector from the centre of the Earth going perpendicular to the orbit plane (using right-hand rule) – at an Ascending Node (where the satellite crosses the Equator going north):
  - $OPP_{Lat} = 90^{\circ}$  minus the orbit inclination
  - $OPP_{Long}$  = longitude of the Ascending Node minus 90°
- 2. Find the Latitude & Longitude of the Sub-Solar Point (the point on the Earth where the sun is directly overhead):
  - SSP<sub>Lat</sub>
  - SSP<sub>Long</sub>
- 3. The Beta Angle is  $90^{\circ}$  minus the angle between SSP & OPP.



#### **Example for a 52° Inclination Orbit**



$$OPP_{Lat} = (90^{\circ} - 52^{\circ}) = 38^{\circ}$$

$$OPP_{Long} = (-112^{\circ} - 90^{\circ}) = -202^{\circ} = 158^{\circ}$$

$$SSP_{Lat} = 0^{\circ}$$

$$SSP_{Long} = -138$$
Angle between = 69.8^{\circ}
Beta Angle = (90^{\circ} - Angle between) = 20.2^{\circ}



## What is the Maximum/Minimum Beta Angle?

- For prograde orbits with an inclination between 0° and 66.55°:
  - (-inclination 23.45°)  $\leq \beta \leq$  (inclination + 23.45°)
- For orbits with an inclination between 66.55° and sun-synchronous: - -90°  $\leq ~\beta ~\leq~$  90°
- For sun-synchronous orbits:
  - It depends on the LTAN (Local Time of the Ascending Node)





## Sun Position During the Year - Analemma

- The analemma is the path which the sun's sub-solar point follows over the course of a year.
- The analemma can significantly affect the Beta Angle, depending on the orbit.





# What is the Eclipse Fraction?

In the 0° Beta Angle case ("noon-midnight" orbit), the eclipse fraction is simple to calculate (for a circular orbit):

- $\rho$  = the angular radius of the Earth
- $2^*\rho$  = the angular diameter of the Earth –the portion which the sun spends in eclipse
- The eclipse fraction =  $2^*\rho$  /  $360^\circ$
- The eclipse duration =  $(2^{\circ}\rho / 360^{\circ})^{\circ}$  the orbit period



In a 400km circular orbit:

- $\rho = 70.2^{\circ}$
- Eclipse Angle  $\epsilon = 2^* \rho = 140.4^\circ$
- Eclipse fraction = ( $\epsilon$  / 360°) = (140.4° / 360°) = 39%
- At 400km, the orbit period is 92.6 minutes
- => the eclipse duration is 39% of 92.6 = 36.1 minutes



## **Eclipse Fraction:** $\beta \neq 0$ ?

When the Beta Angle is not  $0^{\circ}$  (e.g.,  $45^{\circ}$ ) :



Given:

- $\rho = 70.2^{\circ}$
- $\beta = 45^{\circ}$
- Eclipse angle  $\varepsilon = 2^*\cos^{-1}(\cos(\rho) / \sin(90-\beta))$ = 122.8°
- Eclipse fraction =  $122.8^{\circ} / 360^{\circ} = 34.1\%$
- Eclipse duration = 34.1% of 92.6 = 31.6 minutes



# **Zenith Solar Panel Illumination Profile:** $\beta = 0^{\circ}$

For a Zenith-facing panel in a noon-midnight orbit:



What does the power output profile of the Solar Panel look like?



## **Zenith Solar Panel Power Output:** $\beta = 0^{\circ}$



What is the total output power of this Panel?

- The average value of sin from 0 to 180 degrees is ~0.63 (i.e., 63% of the Peak Power output)
- From our satellite, the Zenith panel Peak Power output = 112.3W
- This panel is generating power for 50% of the orbit, so the "Orbit Average Power" will be:

- 112.3W \* 0.63 \* 0.5 = 35.7W.





On RapidEye, we assumed the solar cells would only produce power if the sun angle was at least 8° above the panel's face horizon. \*

So, the power generation curve will look like:



If using this constraint, the power output only drops by 0.3W, to 35.4W.

\* I have not been able to find out whether this was simply a bit of extra margin (since the power output between 0 and 8 degrees is minimal anyway), or whether there was a physical limitation on how low the sun angle could be and still register power. Having a bit of margin is not a bad thing. I mean, if your power budget is so stressed that 0.3W makes a big difference, you've probably got other issues.



#### For Our Mission



- 1.0 m<sup>2</sup> solar panel on +X and -X faces, 17% efficiency cells.
   At Aphelion, maximum panel output = 1322 W/m<sup>2</sup> \* 1.0 m<sup>2</sup> \* 17% = 224 W
   Orbit Average Power = 0.63 \* 50% \* 224W = 70.7 W
- 0.5 m<sup>2</sup> solar panel on +Z face, 17% efficiency cells.
   At Aphelion, maximum panel output = 1322 W/m<sup>2</sup> \* 0.5 W/m<sup>2</sup> \* 17% = 112 W
   Orbit Average Power = 0.63 \* 50% \* 224W = 35.4 W



## **Zenith Panel Output – \beta = -22.5°**

For a Zenith-facing panel with a Beta Angle of -22.5° (this corresponds to a 10:30 a.m. LTAN, which is common for earth observation satellites in sun-synchronous orbits).



The illumination profile is identical to the  $\beta = 90^{\circ}$  case, except that the sun is rotated from the panel normal by  $\beta$  = -22.5°. So, the power generated is reduced by cos(-22.5) = .924 – For the front & back panels, peak power = 224 W \* .924 = 210 W – Orbit Average Power = 70.7W \* .924 = 65.3 W

- For the Zenith panel, peak power = 112 W \* .924 = 105 W Orbit Average Power = 35.4 \* .924 = 32.7W



# **Front Solar Panel Illumination Profile:** $\beta = 0^{\circ}$

For a +X-facing (front) panel in a noon-midnight orbit:



What does the power output profile of the Solar Panel look like (for  $\rho = 20^{\circ}$ )?



## +X (Front) Solar Panel Power Output: $\beta = 0^{\circ}$



The +X panel produces no power until the sun rises above the Earth's horizon, when the sun angle =  $70^{\circ}$ . The average power output value is 0.43.

So, for the front (+X) panel:

- Peak Power = 1322 W/m<sup>2</sup> \* 1m<sup>2</sup> \* 17% efficiency = 224.7W
- Orbit Average Power = 224.7W \* 0.43 \* 0.5 = 48.3W (for left graph)
- Orbit Average Power = 224.7W \* 0.42 \* 0.5 = 48.0W (for right graph)



## -X (Back) Solar Panel Power Output: $\beta = 0^{\circ}$



The Back (-X) panel has the opposite power production profile from the +X panel. Thus, its power production is:

- Peak Power = 1322 W/m<sup>2</sup> \* 1m<sup>2</sup> \* 17% efficiency = 224.7W
- Orbit Average Power = 224.7W \* 0.43 \* 0.5 = 48.3W (for left graph)
- Orbit Average Power =  $224.7W \times 0.42 \times 0.5 = 48.0W$  (for right graph)



## +X/-X Solar Panel Power Output: $\beta = 22.5^{\circ}$

As with the Zenith-facing panel, for a Beta Angle of  $-22.5^{\circ}$  the power generated is reduced by  $\cos(-22.5) = 0.924$ .

Thus, the power for the Front (+X) and Back (-X) panels is:



## **Total Power Generation for Our Mission**

- Add up the OAP from all the panels:
  - +X: 48.3 W
  - Zenith: 35.4 W
  - -X: 48.3 W
  - Total: 132.0 W





## **Side Solar Panel Illumination Profile:** $\beta = 0^{\circ}$

For a side-facing (+Y/-Y) panel in a noon-midnight orbit, it would produce no power.





# **Side Solar Panel Illumination Profile:** $\beta = 50^{\circ}$

For a side-facing (+Y/-Y) panel in a where  $\beta = 50^{\circ}$ 

The sun angle on the panel is constant.

The angle is 90° -  $\beta$  from the panel normal.

Power output =  $cos(90^{\circ} - \beta)$  \* maximum panel power output.

The panel produces power throughout the non-eclipse portion of the orbit.

=> OAP = (non-eclipse fraction) \*  $cos(90^{\circ} - \beta)$  \* maximum panel power output.





# Solar Panel Efficiency vs Temperature

RapidEye solar panel efficiency vs. temperature



Solar cell efficiency is stated for a given temperature (e.g., 20° C).

Efficiency goes down as temperature goes up (~3% for every 20° C). A thermal analysis will be required in order to accurately predict solar panel temperature over the course of an orbit.

You can assume an average temperature & efficiency for the orbit (e.g., 40° C). The more conservative you want to be, the higher average temperature you should use.



# Solar Panel Degradation

- Solar panels will lose their ability to generate power over their mission, due to:
  - Radiation degradation (~1% per year for LEO)
  - Micrometeoroid degradation (~1% per year for LEO)
- This can be exponential (not linear), and will make a big difference when you get into 10+ years on-orbit
- E.g., for a 5-year mission, the degradation will be:
   P<sub>final</sub> = P<sub>initial</sub> \* (1 / 1.02<sup>5</sup>) = ~90.6%
- So, in order to provide 100% power at End-of-Life, you will need:
  - 1 / 0.906 = 110% the amount of solar panel area required at Beginning-of-Life.







## Some Notes about Batteries

- You generally only need batteries during eclipse.
- Charge the batteries with the excess power generated.
- What is the charge/discharge efficiency? (~93% for RapidEye).
   Operation requires more "source" power during eclipse
  - 1 / (0.93\*0.93) = 1.156 (i.e., 15.6% more "source" power needed)
- Is there a maximum charge/discharge limit?
- Depth-of-Discharge vs. Cycles how much does your battery capacity decrease over the mission?









#### **Average & Worst-Cast Power Usage**

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit<br>Average<br>Power (W) | Source?    | Margin | Power<br>Usage with<br>Margin | Orbit Average<br>Power (W) | Voltage | Efficiency<br>Factor | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|-------------------------------|------------|--------|-------------------------------|----------------------------|---------|----------------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                           | Spec sheet | 5.0%   | 9.5                           | 9.5                        | 12      | 98%                  | 9.6                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                          | Measured   | 2.0%   | 12.2                          | 12.2                       | 5       | 66%                  | 18.5                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                           | Spec sheet | 2.0%   | 1.5                           | 1.5                        | 5       | 66%                  | 2.3                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                           | Alteration | 15.0%  | 8.1                           | 8.1                        | 12      | 98%                  | 8.2                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                           | Spec sheet | 5.0%   | 3.2                           | 3.2                        | 5       | 66%                  | 4.8                        |
| - GPS                | 6.0                | 100.0%     | 6.0                           | Measured   | 2.0%   | 6.1                           | 6.1                        | 5       | 66%                  | 9.3                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                           | Measured   | 2.0%   | 1.0                           | 1.0                        | 5       | 66%                  | 1.5                        |
| - Magnetorquer       | 4.0                | 6.7%       | 0.3                           | Measured   | 2.0%   | 4.1                           | 0.3                        | 12      | 98%                  | 0.3                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                           | Measured   | 2.0%   | 2.0                           | 2.0                        | 12      | 98%                  | 2.1                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 2.0                           | 0.0                        | 12      | 98%                  | 0.0                        |
| Transmitter 1        | 5.0                | 3.7%       | 0.2                           | Measured   | 2.0%   | 5.1                           | 0.2                        | 12      | 98%                  | 0.2                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 5.1                           | 0.0                        | 12      | 98%                  | 0.0                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Payload 1            | 15.0               | 30.0%      | 4.5                           | Alteration | 15.0%  | 17.3                          | 5.2                        | 12      | 98.0%                | 5.3                        |
| Payload 2            | 35.0               | 10.0%      | 3.5                           | New Design | 25.0%  | 43.8                          | 4.4                        | 12      | 98.0%                | 4.5                        |
| Total                |                    |            | 50.0                          |            |        |                               | 53.6                       |         |                      | 66.6                       |

| Component            | Power<br>Usage (W) | Duty Cycle | Orbit<br>Average<br>Power (W) | Source?    | Margin | Power<br>Usage with<br>Margin | Orbit Average<br>Power (W) | Voltage | Efficiency<br>Factor | Orbit Average<br>Power (W) |
|----------------------|--------------------|------------|-------------------------------|------------|--------|-------------------------------|----------------------------|---------|----------------------|----------------------------|
| Power Control Module | 9.0                | 100.0%     | 9.0                           | Spec sheet | 5.0%   | 9.5                           | 9.5                        | 12      | 98%                  | 9.6                        |
| Main CPU (C&DH)      | 12.0               | 100.0%     | 12.0                          | Measured   | 2.0%   | 12.2                          | 12.2                       | 5       | 66%                  | 18.5                       |
| AD&C Cpmpuer         | 1.5                | 100.0%     | 1.5                           | Spec sheet | 2.0%   | 1.5                           | 1.5                        | 5       | 66%                  | 2.3                        |
| - Reaction Wheels    | 7.0                | 100.0%     | 7.0                           | Alteration | 15.0%  | 8.1                           | 8.1                        | 12      | 98%                  | 8.2                        |
| - Star Tracker       | 3.0                | 100.0%     | 3.0                           | Spec sheet | 5.0%   | 3.2                           | 3.2                        | 5       | 66%                  | 4.8                        |
| - GPS                | 6.0                | 100.0%     | 6.0                           | Measured   | 2.0%   | 6.1                           | 6.1                        | 5       | 66%                  | 9.3                        |
| - Magnetometer       | 1.0                | 100.0%     | 1.0                           | Measured   | 2.0%   | 1.0                           | 1.0                        | 5       | 66%                  | 1.5                        |
| - Magnetorquer       | 4.0                | 50.0%      | 2.0                           | Measured   | 2.0%   | 4.1                           | 2.0                        | 12      | 98%                  | 2.1                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Receiver 1           | 2.0                | 100.0%     | 2.0                           | Measured   | 2.0%   | 2.0                           | 2.0                        | 12      | 98%                  | 2.1                        |
| Receiver 2           | 2.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 2.0                           | 0.0                        | 12      | 98%                  | 0.0                        |
| Transmitter 1        | 5.0                | 12.0%      | 0.6                           | Measured   | 2.0%   | 5.1                           | 0.6                        | 12      | 98%                  | 0.6                        |
| Transmitter 2        | 5.0                | 0.0%       | 0.0                           | Measured   | 2.0%   | 5.1                           | 0.0                        | 12      | 98%                  | 0.0                        |
|                      |                    |            |                               |            |        | 0.0                           | 0.0                        |         |                      |                            |
| Payload 1            | 15.0               | 40.0%      | 6.0                           | Alteration | 15.0%  | 17.3                          | 6.9                        | 12      | 98.0%                | 7.0                        |
| Payload 2            | 35.0               | 25.0%      | 8.8                           | New Design | 25.0%  | 43.8                          | 10.9                       | 12      | 98.0%                | 11.2                       |
| Total                |                    |            | 58.9                          |            |        |                               | 64.1                       |         |                      | 77.3                       |



#### OAP Generated = 124.3 W

## **Power System Timeline**

To see the instantaneous state of the power system, you can create a timeline with time-slices calculating the state of power generation & usage.

| Time     | Mean<br>Anomaly | Sat Lat | Sat Long | Satellite<br>Heading | Azimuth<br>from Sat to<br>SSP | Sun Az<br>from Sat | Sun Elev<br>from Sat | In Sun? | Panel 1<br>Basic<br>Output | Panel 2<br>Basic<br>Output | Panel 3<br>Basic<br>Output | Total<br>Power |
|----------|-----------------|---------|----------|----------------------|-------------------------------|--------------------|----------------------|---------|----------------------------|----------------------------|----------------------------|----------------|
| 12:00 AM | 270.0           | -0.1    | -50.0    | 352.0                | 298.5                         | 306.5              | -35.5                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:01 AM | 273.9           | 3.7     | -50.5    | 352.0                | 300.6                         | 308.6              | -33.1                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:02 AM | 277.8           | 7.6     | -51.1    | 352.0                | 302.4                         | 310.4              | -30.6                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:03 AM | 281.7           | 11.4    | -51.6    | 351.9                | 304.0                         | 312.1              | -28.0                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:04 AM | 285.5           | 15.3    | -52.2    | 351.8                | 305.3                         | 313.5              | -25.4                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:05 AM | 289.4           | 19.1    | -52.8    | 351.6                | 306.3                         | 314.8              | -22.7                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:06 AM | 293.3           | 23.0    | -53.4    | 351.4                | 307.2                         | 315.8              | -19.9                | 0       | 0.0                        | 0.0                        | 0.0                        | 0.0            |
| 12:07 AM | 297.2           | 26.8    | -54.0    | 351.1                | 307.8                         | 316.7              | -17.1                | 1       | 156.4                      | 0.0                        | 0.0                        | 145.6          |
| 12:08 AM | 301.1           | 30.7    | -54.8    | 350.7                | 308.2                         | 317.5              | -14.3                | 1       | 160.5                      | 0.0                        | 0.0                        | 149.5          |
| 12:09 AM | 305.0           | 34.5    | -55.5    | 350.3                | 308.4                         | 318.1              | -11.4                | 1       | 163.9                      | 0.0                        | 0.0                        | 152.6          |
| 12:10 AM | 308.9           | 38.3    | -56.3    | 349.8                | 308.4                         | 318.5              | -8.5                 | 1       | 166.6                      | 0.0                        | 0.0                        | 155.1          |
| 12:11 AM | 312.8           | 42.2    | -57.3    | 349.2                | 308.1                         | 318.8              | -5.6                 | 1       | 168.4                      | 0.0                        | 0.0                        | 156.8          |
| 12:12 AM | 316.6           | 46.0    | -58.3    | 348.5                | 307.5                         | 319.0              | -2.6                 | 1       | 169.5                      | 0.0                        | 0.0                        | 157.8          |
| 12:13 AM | 320.5           | 49.8    | -59.5    | 347.6                | 306.7                         | 319.1              | 0.3                  | 1       | 169.8                      | 1.3                        | 0.0                        | 158.2          |
| 12:14 AM | 324.4           | 53.6    | -60.9    | 346.5                | 305.5                         | 319.0              | 3.3                  | 1       | 169.4                      | 12.8                       | 0.0                        | 167.0          |
| 12:15 AM | 328.3           | 57.4    | -62.6    | 345.1                | 303.9                         | 318.8              | 6.2                  | 1       | 168.1                      | 24.3                       | 0.0                        | 177.0          |
| 12:16 AM | 332.2           | 61.1    | -64.7    | 343.4                | 301.8                         | 318.4              | 9.1                  | 1       | 166.1                      | 35.6                       | 0.0                        | 186.0          |
| 12:17 AM | 336.1           | 64.8    | -67.3    | 341.0                | 299.0                         | 317.9              | 12.0                 | 1       | 163.3                      | 46.8                       | 0.0                        | 194.1          |
| 12:18 AM | 340.0           | 68.5    | -70.7    | 337.9                | 295.2                         | 317.3              | 14.9                 | 1       | 159.7                      | 57.8                       | 0.0                        | 201.4          |
| 12:19 AM | 343.8           | 72.0    | -75.5    | 333.4                | 289.9                         | 316.5              | 17.7                 | 1       | 155.4                      | 68.5                       | 0.0                        | 207.7          |
| 12:20 AM | 347.7           | 75.4    | -82.4    | 326.7                | 282.3                         | 315.6              | 20.5                 | 1       | 150.4                      | 78.9                       | 0.0                        | 212.9          |



#### **Power System Timeline**

Power usage and battery storage...

|             |          |       |       | 1000 |      |      |       |      |      |      |      |      |      |       |       | Power | SP Power         | Power          | Charge | Charge / | Discharge | Battery |                 |
|-------------|----------|-------|-------|------|------|------|-------|------|------|------|------|------|------|-------|-------|-------|------------------|----------------|--------|----------|-----------|---------|-----------------|
| Time (UTCG) | SP Power | РСМ   | C&DH  | CPU  | RW   | STT  | GPS   | MGM  | мто  | Rx1  | Rx2  | Tx1  | Tx2  | PL 1  | PL 2  | (W)   | Available<br>(W) | Balance<br>(W) | (W)    | (W-hr)   | (Amps)    | hr)     | Battery DoD (%) |
| 12:00 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 376.4   | 10.4            |
| 12:01 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 374.9   | 10.7            |
| 12:02 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 373.3   | 11.1            |
| 12:03 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 371.8   | 11.5            |
| 12:04 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 370.2   | 11.9            |
| 12:05 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 368.7   | 12.2            |
| 12:06 AM    | 0.0      | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 0.0              | -87.7          | -93.3  | -1.56    | 3.33      | 367.1   | 12.6            |
| 12:07 AM    | 145.6    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 145.6            | 57.9           | 55.0   | 0.92     |           | 368.0   | 12.4            |
| 12:08 AM    | 149.5    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 149.5            | 61.7           | 58.7   | 0.98     |           | 369.0   | 12.1            |
| 12:09 AM    | 152.6    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 152.6            | 64.9           | 61.7   | 1.03     |           | 370.0   | 11.9            |
| 12:10 AM    | 155.1    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 155.1            | 67.4           | 64.0   | 1.07     |           | 371.1   | 11.6            |
| 12:11 AM    | 156.8    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 156.8            | 69.1           | 65.6   | 1.09     |           | 372.2   | 11.4            |
| 12:12 AM    | 157.8    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 157.8            | 70.1           | 66.6   | 1.11     |           | 373.3   | 11.1            |
| 12:13 AM    | 158.2    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 158.2            | 70.5           | 67.0   | 1.12     |           | 374.4   | 10.9            |
| 12:14 AM    | 167.0    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 167.0            | 79.3           | 75.4   | 1.26     |           | 375.7   | 10.6            |
| 12:15 AM    | 177.0    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 87.7  | 177.0            | 89.2           | 84.8   | 1.41     |           | 377.1   | 10.2            |
| 12:16 AM    | 186.0    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 0.00  | 107.2 | 186.0            | 78.8           | 74.9   | 1.25     |           | 378.3   | 9.9             |
| 12:17 AM    | 194.1    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 0.00  | 107.2 | 194.1            | 86.9           | 82.6   | 1.38     |           | 379.7   | 9.6             |
| 12:18 AM    | 201.4    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 0.00  | 107.2 | 201.4            | 94.2           | 89.5   | 1.49     |           | 381.2   | 9.2             |
| 12:19 AM    | 207.7    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 0.00  | 107.2 | 207.7            | 100.6          | 95.5   | 1.59     |           | 382.8   | 8.9             |
| 12:20 AM    | 212.9    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 212.9            | 57.1           | 54.2   | 0.90     |           | 383.7   | 8.6             |
| 12:21 AM    | 217.1    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 217.1            | 61.3           | 58.2   | 0.97     |           | 384.7   | 8.4             |
| 12:22 AM    | 220.5    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 220.5            | 64.7           | 61.4   | 1.02     |           | 385.7   | 8.2             |
| 12:23 AM    | 222.6    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 222.6            | 66.7           | 63.4   | 1.06     |           | 386.8   | 7.9             |
| 12:24 AM    | 223.5    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 223.5            | 67.7           | 64.3   | 1.07     |           | 387.8   | 7.7             |
| 12:25 AM    | 223.5    | 16.13 | 30.83 | 3.83 | 8.70 | 8.00 | 15.50 | 2.50 | 0.00 | 2.23 | 0.00 | 0.00 | 0.00 | 19.44 | 48.67 | 155.8 | 223.5            | 67.7           | 64.3   | 1.07     |           | 388.9   | 7.4             |



#### **Power Usage Profile – Average with Margins**





#### <u>Power Usage Profile – Worst-Case + Average</u>



